
Secure Traffic Lights: Replay Attack Detection for Model-based
Smart Traffic Controllers

Pratham Oza
∗

Virginia Tech

prathamo@vt.edu

Mahsa Foruhandeh
∗

Virginia Tech

mfhd@vt.edu

Ryan Gerdes

Virginia Tech

rgerdes@vt.edu

Thidapat Chantem

Virginia Tech

tchantem@vt.edu

ABSTRACT
Rapid urbanization calls for smart traffic management solutions

that incorporate sensors, distributed traffic controllers and V2X

communication technologies to provide fine-grained traffic control

to mitigate congestion. As in many other cyber-physical systems,

smart traffic management systems typically lack security measures.

This allows numerous opportunities for adversarial entities to craft

attacks on the sensor networks, wireless data sharing and/or the

distributed traffic controllers. We show that such vulnerabilities

can be exploited to disrupt mobility in a large urban area and cause

unsafe conditions for drivers and the pedestrians on the roads.

Specifically, in this paper, we look into vulnerabilities in model-

based traffic controllers and show that, even with state-of-the-art

attack detectors in place, false-data injection can be used to hamper

mobility. We demonstrate a replay attack by modeling an isolated

intersection in VISSIM, a popular traffic simulator and also discuss

countermeasures to thwart such attacks.

KEYWORDS
Traffic Controllers, False-data Injection, Model-based CPS.

ACM Reference Format:
Pratham Oza, Mahsa Foruhandeh, Ryan Gerdes, and Thidapat Chantem.

2020. Secure Traffic Lights: Replay Attack Detection for Model-based Smart

Traffic Controllers. In Proceedings of the Second ACM Workshop on Automo-
tive and Aerial Vehicle Security (AutoSec ’20), March 18, 2020, New Orleans, LA,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3375706.

3380554

1 INTRODUCTION
More people are moving into urban areas for better economic and

social prospects [26]. This is accompanied by increasing demands

on urban transportation infrastructure which is typically at capacity

and often cannot cope with this surge in demand. As a result, city-

dwellers often face traffic congestion. On an average, commuters

∗
Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

AutoSec ’20, March 18, 2020, New Orleans, LA, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7113-1/20/03. . . $15.00

https://doi.org/10.1145/3375706.3380554

face about 42 hours of delays in a year due to traffic congestion [2].

Such delays cause wasted time, negative impacts to the socioeco-

nomic growth of the area, increased pollution and fuel expenses [9].

Smart cities provide a promising framework to tackle issues per-

taining to urban resources [28]. Many traffic control strategies have

been proposed that rely on sensors, on-road detectors, cameras

and/or other road-side units (RSUs) to measure real-time traffic

flow characteristics such as queue lengths, vehicle speeds, traffic

density, etc [27]. The measured data is then communicated to a

traffic controller that adaptively manages the traffic flow as per the

deployed control strategy [23, 30]. However, most of these tech-

niques are deployed on top of the legacy traffic infrastructure [3]

which was built without security in mind. This makes the intelligent

traffic management system, like many other cyber-physical sys-

tems, vulnerable to attacks [11, 15]. Adversarial entities can exploit

the weaknesses of these systems using, for example, replay attacks

(i.e., provide controllers with spurious sensing information [6]) or

disrupt measurements and communications (i.e., denial-of-service

(DoS) attacks [16]) to cause phantom traffic jams or otherwise de-

grade the quality of (transportation) service [18].

Model-based traffic control approaches have been fairly pop-

ular in estimating traffic queues and controlling the traffic flow.

Traditional approaches such as UTOPIA [19], PRODYN [13], and

RHODES [20], etc., as well as newly developed MPC-based traf-

fic control algorithms [17] rely on traffic models and state-space

estimations to predict traffic flow and hence establish a finer con-

trol over the traffic. Such model-based controllers not only provide

real-time traffic control from received information about vehicle

density and speed but also provide self-adaptive control strategy

that combines current measurements as well as future estimations

of the traffic characteristics [7, 30]. Since such systems still rely on

measurements from insecure sensors, they need to accompanied

with attack detectors that monitor the estimates made by the model.

These detectors can detect malicious activities if the decisions do

not corroborate the observations [25]. Our key contributions are:

• We propose a replay attack, which is a subset of false-data

injection attacks, on the inductive loop detector used in

transportation systems to estimate vehicle flow.

• We explore the shortcomings of the existing model-based

attack detectors.

• We provide a threshold-based countermeasure and validate

its performance with VISSIM, a real-world traffic simulator.

In this work, we discuss the system model as a four-way traffic

intersection and provide a state-space model in Sec. 2. Then, in

https://doi.org/10.1145/3375706.3380554
https://doi.org/10.1145/3375706.3380554
https://doi.org/10.1145/3375706.3380554

Sec. 3 we design a replay attack on the inductive loop detectors. We

demonstrate the shortcoming of model-based detectors in detecting

our attack in Sec. 4.1. We propose a threshold-based approach as a

countermeasure in Sec. 4.2 and then conclude in Sec. 5.

2 SYSTEM MODEL
This section delves into the traffic parameters and state-space mod-

els to mimic a four-way intersection traffic controller.

2.1 Traffic, Intersection and Infrastructure
Most traffic controllers in the U.S. deploy inductive loop detectors

to collect traffic-related information [12]. Occupancy sensor read-

ings obtained from these inductive loop detectors are then used to

establish control over the traffic lights [1]. In this paper, we con-

sider an isolated four-way intersection as shown in Fig. 1a. Traffic

lights are situated at the end of all four lanes downstream and

are controlled using our model-based traffic controller. This traffic

controller acquires real-time measurements from inductive loop

detectors located upstream. For simplicity, we consider that the

vehicles use the intersection only to go straight (no left/right turns).

Adding turning lanes and vehicles simply requires extending the

system model with multiple traffic lights. Incoming traffic within

each lane has the following characteristics:

• Intensity (𝐼𝑡)[v/h]: Average rate of vehicles entering a given

lane at a time instant 𝑡 .

• Saturation Flow (𝑆)[v/h]: The maximum number of vehicles

per hour that can flow through the intersection depending

on the lane capacity.

• Green Light Duration (𝑧)[s]: The time for which the vehicles

from a lane can access the intersection.

The traffic controller decides the green-yellow-red timing sched-

ule for the traffic lights located at the intersection. The controller

follows a cycle time (𝑇𝑐 [s]) that defines the time window within

which each traffic light turns green at least once. At the beginning

of each 𝑇𝑐 , the controller decides the schedule for the next cycle

window as per the control algorithm and the process repeats at the

end of the cycle.

A vehicle entering the lane activates the inductive loop installed

on the road that generates a signal variation whose duration de-

pends on how long a vehicle stays over the detector. The amount of

time the detector remains activated within a given sample period

determines the occupancy rate (𝑂 [%]) of the sensor. When a vehicle

passes over the detector at high speed, the occupancy rate reported

would be a lower value since the vehicles spend less time over the

detector. This value increases as the speed of the passing vehicle

decreases, and eventually saturates at 100% when the vehicle is

stationary on top of the detector.

While multiple loop detectors may be located on the road to

measure different traffic characteristics, in practice, only the one

located farthest from the intersection is used to measure the flow of

the traffic as it has the least probability of saturation [8]. Therefore,

our trafficmodel considers the loop detectors situated at the farthest

end of our incoming lanes, as shown in Fig. 1a for traffic estimation.

Our model is communication-agnostic and the measurements may

be reported using Dedicated Short Range Communication (DSRC),

CV2X, etc., while assuming that the communication channel is

secure. We now provide a state-space model that closely represents

our adaptive traffic control system.

2.2 Model-based Self-Adaptive Traffic
Controller

Among the various application-specific models that have been de-

veloped to analyze traffic characteristics, the model presented in [4]

provides a state-space model to estimate the parameters of the traf-

fic model based off inductive loop measurements [30]. We use the

model in [4] to adjust the green light duration at the intersection.

Traffic control within each lanes of an intersection can be char-

acterized by estimating the development of vehicle queues in each

lane over time. By utilizing the occupancy rate measurements pro-

vided by the sensors (also known as the measurable quantities)

the states of the system (𝑋𝑡) at a given time instant 𝑡 need to be

formulated to describe how the queues evolve with the measure-

ments and the control decisions for the green light. The state-space

equations are defined as

𝑋𝑡 = [𝑄𝑡 ,𝑂𝑡]𝑇 , (1)

where 𝑄𝑡 is the current estimated queue length in a given lane and

𝑂𝑡 is the occupancy of the inductive loop detector at time 𝑡 .

Similarly, 𝑦𝑡 defines the observable quantities in the system that

influence the evolution of the queues in all lanes and is given by

𝑦𝑡 = [𝑌𝑡 ,𝑂𝑡]𝑇 , (2)

where 𝑌𝑡 is the number of vehicles being dispatched within a given

time window of 𝑇𝑐 due to the controlled green light.

The queue lengthwithin each lane also depends on the saturation

flow of the lane. Saturation flow (𝑆 [veh/h]), as explained earlier,

provides the maximum number of vehicles that can enter into the

lane due to the physical capacity of the lanes and intersection.

Hence, to relate the queue development with the saturation flow,

a parameter 𝛿 is introduced. 𝛿 is set to zero when the incoming

vehicle flow is less than the saturation flow and is set to unity,

otherwise. The value of 𝛿 is updated at the start of each traffic

cycle window and ensures that the incoming flow never exceeds

the saturation flow.

The objective of the controller is to collectively minimize the

vehicle queues in each incoming lane of our intersection. Eq. 3

describes how queue lengths can be estimated from current queues

in the system as well as the current sensor measurements

𝑄𝑡+1 = 𝛿𝑡 𝑄𝑡 − [𝛿𝑡 𝑆 + (1 − 𝛿𝑡) 𝐼𝑡] 𝑧𝑡 + 𝐼𝑡 , (3a)

𝑂𝑡+1 = 𝑘𝑡𝑄𝑡 + 𝛽𝑡 𝑂𝑡 + 𝜆𝑡 , (3b)

where 𝜆, 𝑘 and 𝛽 are environment-dependent parameters that de-

scribe the traffic flow within each lane and have to be estimated

real-time as the traffic flow intensity changes. Here, we estimate

the values of 𝜆, 𝑘 and 𝛽 using our traffic flow simulator, VISSIM [5]

by fitting a linear regression model to each arm of the intersection,

as shown in Fig. 1b and c.

The observable variables of the system such as the vehicles being

dispatched at each green light and the occupancy rate measure-

ments are given by Eq. 4 as

𝑌𝑡+1 = Δ𝑄𝑡+1 + 𝐼𝑡 , (4a)

𝑂𝑡+1 = 𝑂𝑡+1 . (4b)

Road-Side Units
(RSUs)

Traffic Controller

Wired/ Wireless
(CV2X, DSRC)

0 10 20 30 40 50 60

Cycle Index

0

0.5

1

O
cc

up
an

cy
 [%

] w/o attack
w attack

0 10 20 30 40 50 60

Cycle Index

0

10

20

30

40

Q
ue

ue
 L

en
gt

h
[m

]

w/o attack
w attack

(b)

0 20 40 60 80 100 120 140 160 180 200

Queue Length [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
cc

cu
pa

nc
y

[%
]

Vissim Data
Regression

(a) (c) (d)

Figure 1: (a) A typical smart trafficmanagement system for an isolated four-way intersection, (b) VISSIM queue simulation, (c)
Linear regression model to estimate 𝜆, 𝑘 and 𝛽 using queue formation from VISSIM simulation, (d) Observables of the system
with/without attack, Occupancy and Queue Length (the value of the scaling parameter 𝑓 is set to 0.7 in this graph).

And finally, the control law for updating the green lights with

changing occupancy rate measurements is

𝑧𝑡+1 = 𝑧𝑡 (1 + 𝑓 × Δ𝑂) , (5)

where, the green light time, 𝑧𝑡+1 for the next traffic cycle depends

on the current green light time 𝑧𝑡 and the change in occupancy rate

measurements within the last traffic cycle. With a constant traffic

flow, the green light timing settles to a value at which the occupancy

rates do not change and the queues developed are constant. The

parameter 𝑓 is a scaling factor determined experimentally.

Since turning vehicles are disregarded in our model, even though

there are four incoming flows into the intersection, every flow has a

complementing non-conflicting flow. That is, when the traffic lights

turn green, vehicles from two lanes can access the intersection at

once without causing collisions. Thus, the controller can calculate

the green times as per the maximum flow intensity of the two non-

conflicting flows. This will ensure that the flow with less intensity

will also be served properly if the timings are decided as per the

dominant flow [10]. Hence, the traffic lights of the non-conflicting

flows can be paired and controlled at once to improve the efficiency

of the system. Thus, our traffic controller for a four-way intersection

controls the timing schedule for four traffic lights or two traffic

light pairs within a cycle window 𝑇𝑐 .

The equations described above can be extended for a four-way

intersection traffic controller with two traffic light pairs. To ensure

the robustness of our model, measurement noise (𝜈) and process

noise (𝑝) are added. The complete systemmodel equations are given

below. This traffic controller model is then implemented on MAT-

LAB with VISSIM simulation-in-loop to verify its performance. A

short video of VISSIM simulation with the adaptive traffic controller

is available [24].
𝑄1,𝑡+1
𝑄2,𝑡+1
𝑂1,𝑡+1
𝑂2,𝑡+1

 = 𝐴 ×

𝑄1,𝑡+1
𝑄2,𝑡+1
𝑂1,𝑡+1
𝑂2,𝑡+1

 + 𝐵 ×
[
𝑧1,𝑡

𝑧2,𝑡

]
+ 𝐹 + 𝑝𝑡 , (6)

𝑌1,𝑡+1
𝑌2,𝑡+1
𝑂1,𝑡+1
𝑂2,𝑡+1

 = 𝐶 ×

𝑄1,𝑡+1
𝑄2,𝑡+1
𝑂1,𝑡+1
𝑂2,𝑡+1

 + 𝐻 + 𝜈𝑡+1, (7)

where

𝐴 =

𝛿1,𝑡 0 0 0

0 𝛿2,𝑡 0 0

𝑘1,𝑡 0 𝛽1,𝑡 0

0 𝑘2,𝑡 0 𝛽2,𝑡

 ,

𝐵 =

−𝛿𝑆1,𝑡 /𝑑𝑡 − (1 − 𝛿)𝐼1,𝑡 /𝑑𝑡 0

0 −𝛿𝑆2,𝑡 /𝑑𝑡 − (1 − 𝛿)𝐼2,𝑡 /𝑑𝑡
0 0

0 0

 ,

𝐹 =

𝐼1,𝑡𝑑𝑡

𝐼2,𝑡𝑑𝑡

𝜆1

𝜆2

 ,𝐶 =

0 −𝛼 0 0

𝛼 0 0 0

0 0 1 0

0 0 0 1

 , 𝐻 = −𝐶 ×

𝑄1,𝑡 + 𝐼1,𝑡𝑑𝑡
𝑄2,𝑡 + 𝐼2,𝑡𝑑𝑡

0

0

 ,
where dt shows the simulation step time.[
𝑍1,𝑡+1
𝑍2,𝑡+1

]
=

[
𝑍1,𝑡

𝑍2,𝑡

]
×
(
1 + 𝑓 ×

[
Δ𝑂1

Δ𝑂2

])
;𝑍1,𝑡+1 + 𝑍2,𝑡+1 <= 𝑇𝑐 .

(8)

In Eq. 7, 𝛼 represents the ratio of left turning vehicles in a given

incoming traffic stream. To extend the model for turning lanes, 𝛼

values can be found through various data collection points and

traffic flow estimations. For simplicity, we set 𝛼 to zero.

3 THREAT MODEL AND ATTACK STRATEGY
In a typical CPS, adversaries can attack either the analog stimulus

that excites the sensor, the analog output of the sensors or the digital

output of the sensor system that is fed into the control system. This

paper focuses on the digital output of the inductive loop detector

as a possible foothold for a replay attack.

3.1 Attack Goal and Assumptions
Traffic congestion can have network level effects and a large-scale

impact on the safety of everyone involved. The attacker’s objective

is maximizing the queue length to eventually disrupt the trans-

portation network. Hence, our attacker’s goal is to decrease the

efficiency of traffic lights by manipulating the traffic controller.

Since we focus on an isolated traffic intersection, this paper

assumes that the traffic has not been affected by prior events such as

impending queues, traffic congestion etc. Also, the vehicles arrival

pattern in each lane is modeled by Poisson distribution [22] where

the length of each vehicle is the same. All vehicles are assumed to

follow the rules of the traffic light.

The attacker has the ability to view and affect the perceived

occupancy rate. Once the occupancy sensors perform the measure-

ments, the attacker is able to record the output of the sensor and

sending it later at an opportune moment. The attacker may do

so by attaching an additional off-the-shelf microcontroller to read

the sensor values and/or an inexpensive transmitter antenna to

send out the falsified data, which summarizes our replay attack.

Additionally, the attacker has sufficient resources to monitor the

system (intersection). They are also able to wait until the proper

conditions, from their perspective, are present for the attack to take

place. Critically, the attacker does not have the ability to tamper

with the sensor data and can only replay the existing data.

3.2 Attack Strategy
Since the control law for the traffic lights relies on the difference in

occupancy rate measurements, a negative occupancy rate difference

would mean reduction in traffic and would require reduction in

the green light time allocation. Hence, the attacker can constantly

capture the sensor data by monitoring the system and induce an

attack by replaying a low occupancy measurement in place of the

actual reported. By judiciously choosing the right data to send, the

attacker can constantly introduce negative difference in occupancy

rate measurement and disrupt the lights by eventually bringing the

green light time to zero. In the state space model, we target the

Algorithm 1 Replay attack

1: 𝑧: green light duration

2: 𝑂 : occupancy of the inductive loop detector

3: 𝑓 : environment dependent parameter

4: ras: replay attack signal

5: procedure replay attack (𝑂𝑡 , 𝑧𝑡 , 𝑓)

6: ras← Inf

7: for each 𝑡 in 𝑇𝐶 do
8: if 𝑂𝑡 −𝑂𝑡−1 < ras −𝑂𝑡−1 then
9: ras← 𝑂𝑡 ⊲ ras: the smallest value of the sensor

over time

10: 𝑧𝑡 ← 𝑧𝑡−1 (1 + 𝑓 (ras −𝑂𝑡−1))
11: else
12: 𝑧𝑡 ← 𝑧𝑡−1 (1 + 𝑓 (𝑂𝑡 −𝑂𝑡−1))

green light control law given at Eq. 4 to craft a replay attack. This

attack is performed by changing the green light equation as,

𝑧𝑡+1 = 𝑧𝑡 (1 + 𝑓 (ras −𝑂𝑡)) , (9)

where "ras" is the replay attack signal, which holds the smallest

value of 𝑂 up until the current time instant, and gets updated if

𝑂𝑡+1 − 𝑂𝑡 < ras − 𝑂𝑡 . This is summarized in Alg. 1. Eventually

this drives the green light allocation to be less that sufficient and

creates a long queue in at least one arm.

The effect of the attack on a detector placed in one of the lanes

in the system is given in Fig. 1d in terms of occupancy and queue

length with 700 v/h intensity as the dominant traffic flow when the

attack is launched at 420 seconds. It is clear that when the system

is under attack, the occupancy difference injected by the attacker

makes the green light allocation smaller. Due to this, the queue

length increases drastically, the occupancy sensors saturate and

thus, disrupt the traffic network.

We next evaluate the performance of our attack in presence of

the state-of-the-art attack detectors.

4 COUNTERMEASURES

Algorithm 2 Threshold-based attack detection

1: 𝑧: green light duration

2: 𝐼 : intensity of flow of vehicles into an intersection

3: 𝑂 : occupancy of strategic loop detector

4: thrsh: offline value defined on the queue length in each arm

5: 𝜁 : scaling factor

6: procedure Define an offline threshold (𝑂𝑡 , 𝑧𝑡)

7: thrsh← −∞
8: for each t in 𝑇𝐶 do
9: if (𝑂𝑡 −𝑂𝑡−1) > thrsh then
10: thrsh← avg{thrsh,𝑂𝑡 }
11: procedure counter measure (𝑂𝑡 , 𝑧𝑡 , 𝑓 ,𝐼𝑡)

12: for each dt in 𝑇𝐶 do
13: if (𝑂𝑡 −𝑂𝑡−1) < thrsh then
14: attack detected

15: 𝜁 ← Tc∑
𝑎𝑟𝑚 𝐼

16: 𝑧𝑡 ← 𝑧𝑡−1 (𝜁 × 𝐼𝑡)
17: else
18: 𝑧𝑡 ← 𝑧𝑡−1 (1 + 𝑓 × ∆O)
19: update offline threshold

In this section, by using an approximate model for estimating the

occupancy previously presented in Sec. 2, we show that the state-

of-the-art model-based detectors fail to detect our replay attack,

and then we provide countermeasures to modify such detectors.

4.1 Model-based attack detectors
In practice, an attack detector is based off an approximate model of

the system, as it must closely represent the system without relying

on having an exact knowledge of it. The model given in Eq. 10

and Eq. 11 holds the occupancy values as the main observable in

the system. The simplicity of the model, and the fact that these

occupancy measurements are the main foothold for the attacker,

makes the approximate model a better candidate for our analysis

hereafter. The state space equations of the approximate model are[
𝑂1,𝑡+1
𝑂2,𝑡+1

]
= 𝐴′ ×

[
𝑂1,𝑡

𝑂2,𝑡

]
+ 𝐵′ (𝑑𝑡) ×

[
𝑢1,𝑡

𝑢2,𝑡

]
+
[
𝑝1,𝑡

𝑝2,𝑡

]
, (10)

0 10 20 30 40 50 60 70 80 90 100

time index

-25

-20

-15

-10

-5

0

5

10

r(
t)

w/o attack
w attack

(a) Noise power: 0.015% of signal power

0 10 20 30 40 50 60 70 80 90 100

time index

-15

-10

-5

0

5

10

r(
t)

w/o attack
w attack

(b) Noise power: 0.172% of signal power

0 10 20 30 40 50 60 70 80 90 100

time index

-200

-150

-100

-50

0

50

100

r(
t)

w/o attack
w attack

(c) Noise power: 0.394% of signal power

Figure 2: The performance of the state-of-the-art model-based detector [25] under different measurement noise power values.

0 10 20 30 40 50 60

time index

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

 O

w attack
w/o attack
detection threshold

Figure 3: Setting a threshold to detect an attack using the
occupancy sensor values.

[
𝑂1,𝑡+1
𝑂2,𝑡+1

]
= 𝐶′ ×

[
𝑂1,𝑡

𝑂2,𝑡

]
+𝐷′ (𝑑𝑡) ×

[
𝑢1,𝑡

𝑢2,𝑡

]
+
[
𝜈1,𝑡

𝜈2,𝑡

]
, (11)

where

𝐴′ =
[
1 0

0 1

]
, 𝐵′ =

[
3 0

0 3

]
,𝐶 ′ =

[
2.5 0

0 2.5

]
, 𝐷 ′ = 𝐷,

and 𝑢 shows the input approximation as per vehicles entering and

leaving and 𝑢𝑡+1 is given as

𝑢𝑡+1 = 𝑖 × 𝑑𝑡 − 𝑆 × 𝑧𝑡+1 . (12)

Next, we explore the existing methods for detecting our replay

attack on the approximate model. Model-based attack detectors

are extensively covered in the state-of-the-art as strong candidates

for detection of false-data injection in control systems [25]. Here

we demonstrate shortcomings of the model-based approach by

Pasqualetti et al. [25] in detecting our replay attack, and then pro-

vide our threshold-based countermeasure which successfully de-

tects malicious activities when our attack is in progress. Our results

are then validated through VISSIM.

Model-based attack (anomaly) detectors for CPS are those that

make an estimate of how the system should be observed to evolve

and compare it with the measured value of the state (how the

system actually evolves), shown by 𝑟 (𝑡) at Eq. 13. In absence of an

attacker 𝑟 (𝑡) should be close to zero. Pasqualetti et al [25] propose

a monitor 𝜔 (𝑡) for this purpose which is defined as

𝐸 ¤𝜔 (𝑡) =
(
𝐴′ +𝐺𝐶 ′

)
𝜔 (𝑡) −𝐺 𝑦 (𝑡) ,

𝑟 (𝑡) = 𝐶 ′𝜔 (𝑡) − 𝑦 (𝑡) ,
(13)

where 𝐸 = 1 in our approximate model, 𝜔 (0) = 𝑥 (0), and 𝐺 is the

output injection matrix which should be selected so that the pair

(𝐸,𝐴′ +𝐺𝐶 ′) is regular and Hurwitz [14].

Fig. 2 illustrates the robustness of the Pasqualetti’s detector to

the measurement noise power when our attack is taking place. With

low measurement and process noise, an abrupt change will appear

in the error calculations which makes it possible to perform anom-

aly based attack detection shown in Fig. 2a. As the measurement

noise power increases while the estimation noise is kept consistent,

the performance of Pasqualetti’s detector degrades (Fig. 2b) and

eventually breaks (Fig. 2c). This shows that our replay attack is not

detectable by the model-based detector of the state-of-the-art if

noise power exceeds 0.394% of the original signal power.

4.2 Threshold-based attack detectors
Having shown the shortcomings of the model-based attack detec-

tors to detect our replay attack, we now introduce a countermeasure

in this section. The conventional andmost common countermeasure

against false-data injection attacks on control systems is Kalman

Filter (KF) estimation of the states of the system followed by a

simple comparison [4, 21]. Even though KF has high accuracy of

estimation over the other available filters, it is designed on the basis

of the not necessarily correct assumption that the parameters are

Gaussian distributed in a linear system. Other filters such as particle

filtering [29] overcome this shortcoming by addressing the general

non-Gaussian non-linear systems at the cost of higher complexity.

To avoid the complexity-performance trade-off, a general solution

to this problem could be using the timestamps of the inductive

loop detector output. However, this method depends on another

sensor output and there is no guarantee that it is secure. Also, a

sophisticated attacker can forge time-stamps by crafting a more

complicated attack than a replay attack.

We address these shortcomings by proposing a threshold based

countermeasure described in detail in Alg. 2. The threshold is de-

fined in an offline training process to distinguish between benign

and malicious activities by looking into the changes in the occu-

pancy sensors readings in two consecutive time instants (given

by Δ𝑂). In this case, we adjust the threshold in a way that it de-

tects the abrupt change generated in the reported Δ𝑂 when there

are ongoing malicious activities. Anytime the change in Δ𝑂 goes

above this threshold an attack is said to be detected. This threshold

changes overtime, and needs to be updated using secure data. Note

that upon detection of an attack the green light values get updated

by a new control law

𝑧𝑡 = 𝑧𝑡−1 (𝜁 × 𝐼𝑡) , (14)

where 𝜁 is a normalizing factor given by 𝜁 =
Tc∑
𝑎𝑟𝑚 𝐼

, such that the

green time is proportionally distributed as per the incoming traffic

flow rate, while assuming the 𝐼𝑡 measurement is secure.

Fig. 3 shows the change of occupancy over time for one arm

with/without attack, where the threshold is defined to create sepa-

rability between the spike in the graph caused by the attack versus

the case with no attack.

4.3 Time Complexity
The threshold-based detection mechanism is provided in Alg. 2,

where the training of threshold is performed offline and hence

does not add to the time complexity of the approach. The detection

mechanism however, includes a comparison operationwhich results

in time complexity of 𝑂 (𝑛).

5 CONCLUSION
In this paper, we first introduce a replay attack on the inductive loop

sensors which are used for traffic control in an isolated four-way

intersection. More specifically, the occupancy sensor measurements

are used as a feedback to adjust the green light timings for the traffic

lights. By introducing a replay attack, a type of false-data injection

attack, our attacker minimizes the efficiency of the traffic controller

by affecting the green light allocation and thereby maximizing

the queue lengths in at least one of the lanes of the intersection.

By showing that the existing model-based attack detectors fail in

detecting our attack, we put forth an alternative threshold-based

detection algorithm. This detector observes the occupancy sensor

data over time and raises a flag if the changes in the occupancy

sensor measurements are above an offline defined threshold. As-

sessment of the current threshold-based detector under a smarter

attacker capable of evasion attacks is the future direction of our

work. We are also interested in extending this study to analyse the

feasibility of our approach for broader ranges of traffic models that

rely on occupancy sensor measurements.

6 ACKNOWLEDGEMENT
This work was supported in part by the U.S. National Science Foun-

dation under grant number 1658225.

REFERENCES
[1] M Burger, M Van Den Berg, Andreas Hegyi, B De Schutter, and J Hellendoorn.

2013. Considerations for model-based traffic control. Transportation Research
Part C: Emerging Technologies 35 (2013), 1–19.

[2] Graham Cookson and Bob Pishue. 2017. INRIX Global Traffic Scorecard–

Appendices. INRIX research (2017).

[3] Christopher M Day, Rob Helt, Daniel Sines, and AM Tahsin Emtenan. 2019.

Leveraging Sensor-Based Vehicle Position and Speed Information in Traffic Sig-

nal Control with Existing Infrastructure. In 2019 IEEE Intelligent Transportation
Systems Conference (ITSC). IEEE.

[4] Jindrich Dunik, Pavla Pecherkova, and Miroslav Flidr. 2006. State space model

of traffic system and its estimation using derivative-free methods. UTIA AVCR
(2006).

[5] Martin Fellendorf and Peter Vortisch. 2010. Microscopic traffic flow simulator

VISSIM. In Fundamentals of traffic simulation. Springer.
[6] Yiheng Feng, Shihong Huang, Qi Alfred Chen, Henry X Liu, and Z Morley Mao.

2018. Vulnerability of traffic control system under cyber-attacks using falsified

data. In 97th Annual Meeting of the Transportation Research Board.
[7] Alberto Fernández-Isabel and Rubén Fuentes-Fernández. 2015. Analysis of in-

telligent transportation systems using model-driven simulations. Sensors 15, 6
(2015).

[8] FHWA. 2006. Traffic Detector Handbook, Chapter 4. https://www.fhwa.dot.

gov/publications/research/operations/ITS/06108/04.cfm. [Online; accessed 24-

December-2019].

[9] FHWA. 2018. Intersection Safety, Data and analysis. https://highways.dot.gov/

research-programs/safety/intersection-safety. [Online; accessed 18-Jan-2019].

[10] FHWA-USDoT. 2019. Signalized intersections: Informational guide. https:

//www.fhwa.dot.gov/publications/research/safety/04091/07.cfm

[11] Branden Ghena, William Beyer, Allen Hillaker, Jonathan Pevarnek, and J Alex

Halderman. 2014. Green lights forever: Analyzing the security of traffic infras-

tructure. In 8th {USENIX} Workshop on Offensive Technologies ({WOOT}).
[12] Juan Guerrero-Ibáñez, Sherali Zeadally, and Juan Contreras-Castillo. 2018. Sensor

technologies for intelligent transportation systems. Sensors 18 (2018).
[13] Jean-Jacques Henry, Jean Loup Farges, and J Tuffal. 1984. The PRODYN real time

traffic algorithm. In Control in Transportation Systems. Elsevier, 305–310.
[14] Adolf Hurwitz. 1898. Ueber die Composition der quadratischen Formen von

belibig vielen Variablen. Nachrichten von der Gesellschaft der Wissenschaften zu
Göttingen, Mathematisch-Physikalische Klasse 1898 (1898), 309–316.

[15] Kaveh Bakhsh Kelarestaghi, Mahsa Foruhandeh, Kevin Heaslip, and Ryan Gerdes.

2019. Intelligent transportation system security: impact-oriented risk assessment

of in-vehicle networks. IEEE Intelligent Transp. Systems Magazine 10 (2019).
[16] Zhiyi Li, Dong Jin, Christopher Hannon, Mohammad Shahidehpour, and Jianhui

Wang. 2016. Assessing and mitigating cybersecurity risks of traffic light systems

in smart cities. IET CPS: Theory & Applications (2016).
[17] Shu Lin, Bart De Schutter, Yugeng Xi, and J Hellendoorn. 2009. A simplified

macroscopic urban traffic network model for model-based predictive control.

IFAC Proceedings Volumes 42 (2009), 286–291.
[18] Yue Liu and Gang-Len Chang. 2011. An arterial signal optimization model for

intersections experiencing queue spillback and lane blockage. Transportation
research part C: emerging technologies 19, 1 (2011), 130–144.

[19] Vito Mauro and C Di Taranto. 1990. Utopia. IFAC Proceedings Volumes (1990).
[20] P. Mirchandani and Fei-Yue Wang. 2005. RHODES to intelligent transportation

systems. IEEE Intelligent Systems (2005), 10–15.
[21] Yilin Mo and Bruno Sinopoli. 2010. False data injection attacks in control systems.

In The 1st workshop on Secure Control Systems. 1–6.
[22] Alan V Oppenheim. 1999. Disc-time signal processing. Pearson.
[23] Pratham Oza and Tam Chantem. 2019. A Real-Time Server Based Approach for

Safe and Timely Intersection Crossings. In 2019 IEEE 25th International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA). 1–12.

[24] Pratham Oza andMahsa Foruhandeh. 2020. VISSIM simulation with replay attack.

https://youtu.be/CnZGagb-s_A. [Online; accessed January 2, 2020].

[25] Fabio Pasqualetti, Florian Dörfler, and Francesco Bullo. 2013. Attack detection

and identification in cyber-physical systems. IEEE transactions on automatic
control 58, 11 (2013), 2715–2729.

[26] Statista. 2017. US Urbanization. https://www.statista.com/statistics/269967/

urbanization-in-the-united-states/. [Online; accessed 24-December-2019].

[27] Ozan K Tonguz and Rusheng Zhang. 2019. Harnessing vehicular broadcast

communications: Dsrc-actuated traffic control. IEEE Transactions on Intelligent
Transportation Systems (2019).

[28] Norbert Varga, László Bokor, András Takács, József Kovács, and László Virág.

2017. An architecture proposal for V2X communication-centric traffic light

controller systems. In 15th Int. Conf. on ITS Telecomm. (ITST). IEEE, 1–7.
[29] Darren BWard, Eric A Lehmann, and Robert CWilliamson. 2003. Particle filtering

algorithms for tracking an acoustic source in a reverberant environment. IEEE
Transactions on speech and audio processing 11, 6 (2003).

[30] Luana Chetcuti Zammit, Simon G Fabri, and Kenneth Scerri. 2019. Real-time

parametric modeling and estimation of urban traffic junctions. IEEE Transactions
on Intelligent Transportation Systems (2019).

https://www.fhwa.dot.gov/publications/research/operations/ITS/06108/04.cfm
https://www.fhwa.dot.gov/publications/research/operations/ITS/06108/04.cfm
https://highways.dot.gov/research-programs/safety/intersection-safety
https://highways.dot.gov/research-programs/safety/intersection-safety
https://www.fhwa.dot.gov/publications/research/safety/04091/07.cfm
https://www.fhwa.dot.gov/publications/research/safety/04091/07.cfm
https://youtu.be/CnZGagb-s_A
https://www.statista.com/statistics/269967/urbanization-in-the-united-states/
https://www.statista.com/statistics/269967/urbanization-in-the-united-states/

	Abstract
	1 Introduction
	2 System Model
	2.1 Traffic, Intersection and Infrastructure
	2.2 Model-based Self-Adaptive Traffic Controller

	3 Threat Model and Attack Strategy
	3.1 Attack Goal and Assumptions
	3.2 Attack Strategy

	4 Countermeasures
	4.1 Model-based attack detectors
	4.2 Threshold-based attack detectors
	4.3 Time Complexity

	5 Conclusion
	6 Acknowledgement
	References

